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Entropy of the Quantum Scalar Field in Static
Black Holes
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The quantum corrections to the entropy of static black holes are investigated by
two methods: the brick wall method of ’ t Hooft and the Euclidean path integral
approach of Gibbons and Hawking. Two general formulas for the entropy are
obtained and some examples are considered. It is shown that if the contribution
from the vacuum surrounding the system is ignored, then the two approaches
give the same results. It is found that the entropy of the quantum scalar field in
a general static black hole consists of two parts: a quadratically divergent term
which takes a geometric character and a logarithmically divergent term which is
not proportional to the horizon area. The logarithmical ly divergent term, in
general, depends on the black hole characteristics (in particular, the whole entropy
is determined only by this term for some extreme cases) and therefore cannot be
neglected as a nonessential additive constant. The renormalization of the entropy
is also discussed briefly.

1. INTRODUCTION

One of the interesting problems of black hole physics is to investigate

whether the geometric character of the Bekenstein±Hawking entropy
(Bekenstein, 1972, 1973; Hawking, 1975) of a black hole [i.e., the entropy

of a black hole is proportional to the area of the horizon in four-

dimensional spacetime (Bekenstein, 1974; Kallosh et al., 1993; Jing,

1993, 1994)] remains valid when quantum corrections [say, due to quantum

fluctuations of the matter fields in the black hole background (’ t Hooft,

1985; Susskind and Uglum, 1994)] are taken into account. There has been
considerable interest in the problem (’ t Hooft, 1985; Susskind and Uglum,

1994; Solodukhin, 1995a±c; Ghosh and Mitra, 1994; Frolov et al., 1996;

Kabat and Strassler, 1994; Jing, 1997; Lee and Kim, 1996). ’ t Hooft

1 Institute of Physics and Physics Department, Hunan Normal University, Changsha, Hunan
410081, China.

1441

0020-7748/98/0500-144 1$15.00/0 q 1998 Plenum Publishing Corporation



1442 Jing

(1985) studied the quantum corrections to the entropy of the Schwarzschild

black hole arising from a scalar field propagating in the region just outside

the horizon, by using the brick wall method (BWM). He found that the

quantum scalar field theory fluctuations at the Hartle±Hawking temperature

give the following leading one-loop contributions to the entropy: Sq 5
Svolume 1 Shorizon, with Svolume 5 8 p 3V /135 b 3 and Shorizon 5 (8 p 3/45)(2M )4/

h b 3, where V is the box volume, b is the Hawking inverse temperature,

and h is a cutoff. The Shorizon takes the geometric character (Solodukhin,

1995b) Ah/48 p e 2 if we let d 2 5 2 e 2/15 [where d 5 2 ! rhh is the proper

distance from the horizon rh to rh 1 h, and e is the ultraviolet cutoff

(Solodukhin, 1995b). Ghosh and Mitra (1994) studied the entropy of a

scalar field in the background of a dilatonic black hole using BWM.

Their result also possesses the geometric character Shorizon 5 Ah/48 p e 2 if

we take d 2 5 2 e 2/15 for the nonextremal black hole.

Solodukhin (1995a), starting from the one-loop effective action for

scalar matter, investigated the quantum corrections to the Schwarzschild

black hole by using the Euclidean path integral approach (EPIA) of

Gibbons and Hawking (1977; Hawking, 1979). In addition to the ’ t Hooft

term Shorizon given above, the Solodukhin entropy also has a logarithmically

divergent term Slog 5 (1/45) ln( L / e ), where L is the infrared cutoff

(Solodukhin, 1995a). When we study the Schwarzschild black hole carefully

we note that a logarithmically divergent term exists, in the BWM which

can be also cast into the form Slog 5 (1/45) ln( L / e ). We might assume

that this term is not essential and does not influence the physics since

the entropy is defined up to an arbitrary additive constant. However, for

the Reissner±NordstroÈ m black hole, Solodukhin (1995a) showed that the

appearance of the nongeometric, logarithmically divergent term is typical

in four-dimensional spacetime.

In this paper, we study quantum corrections to the entropy of some well-

known static black holes by using the BWM and EPIA, and to investigate

whether the two methods give the same results and whether the geometric

character of the entropy remains valid when quantum corrections are taken

into account.

The paper is organized as follows: In Section 2 we first use the BWM

to deduce a quantum correction formula for the Bekenstein±Hawking entropy

for general static black holes. We then use the expression to study the quantum

entropy of some static black holes. In Section 3, by using the EPIM, we

generalize Solodukhin’ s (1995b) equation (15) to general static black holes

and use the formula to calculate the quantum entropy of the black holes

given in Section 2. The results obtained by the two approaches are then

compared. We conclude with some discussions in Section 4.
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2. THE ENTROPY OF QUANTUM SCALAR FIELD IN STATIC
BLACK HOLES OBTAINED BY THE BRICK WALL
METHOD

We now try to find a general entropy expression for a minimally coupled

quantum scalar field in thermal equilibrium at temperature 1/ b in static black
holes by using the BWM (’ t Hooft, 1985). The partition function is given by

Z 5 o
nq

exp[ 2 b (Eq)nq] (1)

where q denotes a quantum state of the field with energy Eq. The free energy

is given by (’ t Hooft, 1985)

F 5
1

b #
`

0

dg(E ) ln {1 2 exp[ 2 b E ]} (2)

where g (E ) [ p N, and N is the total number of waves with energy not

exceeding E.

In the BWM (’ t Hooft, 1985) the wave function is cut off just outside

the horizon, i.e., f 5 0 at r 5 r+ 1 h, where h is a small, positive quantity

and signifies an ultraviolet cutoff. To remove the infrared divergence we also

introduce an infrared cutoff L . . r+ such that f 5 0 for r 5 L.
The wave equation for the scalar field reads

1

! 2 g
- m ( ! 2 gg m n - n f ) 2 m 2 f 5 0 (3)

Using the WKB approximation with f 5 exp[ 2 iEt 1 is(r, u , w )], we

can let pr 5 - rs, p w 5 - w s, and p u 5 - u s. Substitution of the general static

black hole metric

ds2 5 gttdt2 1 grrdr2 1 g u u d u 2 1 g w w d w 2 (4)

into equation (3) yields (Mann et al. 1992) p2
r 5 (1/grr)( 2 gttE 2 2 g w w p2

w 2
g u u p2

u 2 m 2). Therefore, in phase space we obtain the number of modes

(Padmanabhan, 1986, 1989)

G (E ) 5
1

p # d w d u #
L

r 1 1 h

dr

3 # dp u dp w 1 1

g rr ( 2 g ttE 2 2 g w w p 2
w 2 g u u p 2

u 2 m 2) 2
1/2

(5)
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The integral is taken only over those values for which the square root exists.

We find that the function g (E ) [ p N in ’ t Hooft (1985) is equal to (1/

8 p 2) G (E ) for static spacetime. Putting the result into equation (2) and then
integrating over p w and p u yields

F 5 2
1

6 p 2 b # d w d u #
L

r 1 1 h

dr #
`

m ! 2 gtt

dE

e b E 2 1

! 2 g

! 2 gtt 1 E 2

2 gtt

2 m 2 2
3/2

(6)

where g is the determinant of the metric g m n . For a massless scalar field, i.e.,

m 5 0, after carrying out integration of E, the free energy then reduces to

F 5 2
p 2

90 b 4 # d w d u #
L

r 1 1 h

! 2 g

g 2
tt

dr (7)

which is also an approximative result for the case m 2 , , r+/h b 2 and L . .
r+ (’ t Hooft, 1985). Inserting equation (7) into the formula for entropy S 5
b 2( - F/ - b ), we obtain following expression for quantum corrections to the
Bekenstein±Hawking entropy for general static black holes:

S 5
2 p 2

45 b 3 # d w d u #
L

r 1 1 h

! 2 g

g 2
tt

dr (8)

We now consider some particular examples

2.1. The Schwarzschild Black Hole

Substituting the metric of the Schwarzschild black hole

ds2 5 2 1 1 2
2M

r 2 dt2 1
dr2

1 2 2M /r
1 r 2 d u 2 1 r 2 sin2 u d w 2 (9)

into equation (8) and then integrating over u , w , and r, we find the leading

behavior of the entropy

SSch 5
8 p 3L 3

135 b 3 1
rh

360h
1

1

90
ln 1 Lh 2 (10)

where rh 5 2M is the event horizon and b 5 4 p rh is the Hawking inverse

temperature. The first part in equation (10) is the usual contribution from

the vacuum surrounding the system at large distances. The second part is an

intrinsic contribution from the horizon and it diverges linearly as h ® 0. The
third part is a logarithmically divergent term. When we let d 2 5 2 e 2/15 and

L 2 5 L e 2/h 5 30rhL [where d 5 * rh 1 h
rh ! grr dr ’ 2 ! rhh is the proper distance

from the horizon rh to rh 1 h, e is the ultraviolet cutoff, and L is the infrared

cutoff of Solodukhin(1995b), we can rewrite the entropy (10) as
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SSch 5
8 p 3L 3

135 b 3 1
Ah

48 p e 2 1
1

45
ln 1 L e 2 (11)

where Ah 5 4 p r 2
h is area of the event horizon.

2.2. The Reissner± NordstroÈ m Black Hole

The metric of the Reissner±NordstroÈ m (RN) black hole is described by

ds2 5 2 1 1 2
2M

r
1

Q 2

r 2 2 dt2 1
dr2

1 2 2M /r 1 Q 2/r 2 1 r 2 d u 2

1 r 2 sin2 u d w 2 (12)

Inserting metric (12) into (8) and then taking the integration, we get

SRN 5
8 p 3L 3

135 b 3 1
r+ 2 r 2

360h
1 1 2 1

180
1

1

60

r+ 2 r 2

r+ 2 ln 1 Lh 2 (13)

where r+ 5 M 6 ! M 2 2 Q2 and b 5 4 p r 2
1 /(r+ 2 r 2 ). If we take d 2 5 2 e 2/

15 and L 2 5 L e 2/h 5 30r 2
1 L/(r+ 2 r 2 ) [where d 5 * r 1 1 h

r 1 ! grr dr 5 2{[r 2
+/

(r+ 2 r 2 )]h}1/2 is the proper distance from the horizon r+ to r+ 1 h], then

we can cast the entropy (13) as

SRN 5
8 p 3L 3

135 b 3 1
Ah

48 p e 2 1 1 2
1

90
1

1

30

4 p r+

b 2 ln 1 L e 2 (14)

where Ah 5 4 p r 2
1 . For an extreme black hole [M 5 Q, r+ 5 M, and b (r+)

5 ` ], Equation (14) becomes

SRN 5
8 p 3L 3

135 b 3 1
Ah

48 p e 2 2
1

90
ln 1 L e 2 (15)

We know from equation (14) and (15) that the entropy of the RN black hole

also contains three parts, like that of the Schwarzschild black hole.

2.3. The Garfinkle± Horowitz± Strominger Dilatonic Black Hole

By using the metric of the Garfinkle±Horowitz±Strominger (GHS) dila-

tonic black hole (Garfinkle et al., 1991)

ds2 5 2 1 1 2
2M

r 2 dt2 1
dr2

1 2 2M /r
1 r (r 2 a)(d u 2 1 sin2 u d w 2) (16)
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and equation (8), we obtain

SGHS 5
8 p 3L 3

135 b 3 1
2M 2 a

360h
1 1 1

90
2

a

120r+ 2 ln 1 Lh 2 (17)

where r+ 5 2M, b 5 4 p r +, and a 5 Q 2/2Me 2 2 f 0. Noting that the proper

distance from the horizon r+ to r+ 1 h is d 5 2 ! r+h, if we set d 2 5 e 2/15
and L 2 5 L e 2/h 5 30rhL, we can rewrite the entropy (17) as

SGHS 5
8 p 3L 3

135 b 3 1
Ah

48 p e 2 1 1 1

180
1

1

60

Ah

r+ b 2 ln 1 L e 2 (18)

where Ah 5 4 p r+ (r+ 2 a). In comparison with the results of Ghosh and

Mitra (1994) we have an additional logarithmically divergent term

1 1

180
1

1

60

Ah

r+ b 2 ln 1 L e 2
which is dependent on the mass M and electric charge Q of the black bole

and therefore cannot be neglected as a nonessential additive constant. Our

results (17) and (18) are valid for both the extremal and nonextremal black

holes. For the extremal black hole, i.e., r + 5 2M 5 a and b (r+) 5 8 p M,

the second part in (18) vanishes and the logarithmic term becomes

S ext
GHS 5

1

180
ln 1 L e 2 (19)

which is whole entropy of the black hole if we ignore the contribution from

the vacuum surrounding the system. In the extremal case our result is same

as that of Ghosh and Mitra’s (1994).

2.4. The Static Gibbons± Maeda Dilaton Black Hole

The metric of the static Gibbons±Maeda (GM) dilaton black hole is

described by (Gibbons and Maeda, 1988)

ds2 5 2
(r 2 r+) (r 2 r 2 )

R 2 dt2 1
R 2dr2

(r 2 r+)(r 2 r 2 )

1 R 2(d u 2 1 sin2 u d w 2), (20)

where r+ 5 M 6 ! M 2 1 D 2 2 P 2 2 Q 2, D 5 (P 2 2 Q2)/2M and R 2 5
r2 2 D 2. The parameters Q and P represent electric charge and magnetic

charge, respectively.
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The leading behavior of the entropy of a scalar field in the background

of the black hole can be obtained by using (8) and (20), and is explicitly

given by

SGM 5
8 p 3L 3

135 b 3 1
r+ 2 r 2

360h
1 1 2 1

180
1

1

60

r 2
1 2 r+r 2

r 2
1 2 D 2 2 ln 1 Lh 2 (21)

here b 5 4 p (r 2
1 2 D 2)/(r+ 2 r 2 ). When we set d 2 5 2 e 2/15 and L 2 5 L e 2/

h 5 30(r 2
1 2 D 2)L /(r+ 2 r 2 ) (where d 5 2{[(r 2

1 2 D 2)/(r+ 2 r 2 )]h}1/2),

then we can rewrite the entropy (21) as

SGM 5
8 p 3L 3

135 b 3 1
Ah

48 p e 2 1 1 2
1

90
1

1

30

4 p r+

b 2 ln 1 L e 2 (22)

where Ah 5 4 p (r 2
1 2 D 2).

In the case of a dilaton extreme black hole with only electric charge
( p 5 0), i.e., M 2 5 2 Q 2/2, and b (r+) 5 8 p M, the horizon area vanishes,

Ah 5 0, if we take no notice of the contribution from the vacuum surrounding

the system; then the whole black hole entropy is determined only by the

logarithmically divergent term

S ext
GM 5

1

180
ln 1 L e 2 (23)

which is equal to the result of the extreme GM dilaton black hole.

2.5. The Garfinkle± Horne Dilaton Black Hole

The Garfinkle±Horne (GH) dilaton black hole metric in the Einstein±
Maxwell dilaton theory can be expressed as (Garfinkle et al., 1991; Horne

and Horowitz, 1992)

ds2 5 2 1 1 2
r+

r 2 1 1 2
r 2

r 2
(1 2 a2)/(1 1 a2)

dt2

1 1 1 2
r+

r 2
2 1

1 1 2
r 2

r 2
(a2 2 1)/(1 1 a2)

dr2

1 r 2 1 1 2
r 2

r 2
2a2/(1 1 a2)

(d u 2 1 sin2 u d w 2) (24)

with dilaton field e2 F 5 (1 2 r 2 /r)2a/(1 1 a2)e 2 2 F O and Maxwell field F 5 (Q /

r 2) dt Ù dr, where a is a coupling constant. r 5 r+ is the location of the

event horizon. For a 5 0, r 5 r 2 is the location of the inner Canchy horizon;
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however, for a . 0 the surface r 5 r 2 is singular. The mass M and charge

Q of the black hole are related to parameters r+ and r 2 by

2M 5 r+ 1 1 1 2 a 2

1 1 a2 2 r 2 and Q 2 5
r+r 2

1 1 a2 e 2a F 0

Substitution of (24) into (8) yields

SGH 5
8 p 3L 3

135 b 3 1
1

360 F r+ 2 r 2

h
1 1 2(2a 2 2 1)

1 1 a 2 1
6

1 1 a 2

Ak

r+ b 2 ln
L

h G (25)

where

b 5
2 p
k

5
4 p r+

(1 2 r 2 /r+)
(1 2 a2)/(1 1 a2)

Ah 5 # ! g u u g w w d u d w 5 4 p r 2
1 1 1 2

r 2

r+ 2
2a2/(1 1 a2)

we let d 2 5 2 e 2/15 and L 2 5 L e 2/h, where

d 5 e r
1

1 h

r
1 ! grr dr ’ 2r 1/(1 1 a2)

1 (r+ 2 r 2 )(a2 2 1)/2(1 1 a2) ! h)

Then we can rewrite the entropy (25) as

S GH 5
8 p 3L 3

135 b 3 1
Ah

48 p e 2 1
1

90 1 2a 2 2 1

1 1 a 2 1
3

1 1 a 2

Ah

r+ b 2 ln
L
e

(26)

In the extreme case r+ 5 r 2 , (a Þ 0), the area of the event horizon vanishes.

If we ignore the contribution from the vacuum surrounding the system,

the whole black hole entropy is determined only by the logarithmically
divergent term

S ext
GH 5 F 1

45
2

1

30

1

1 1 a 2 G ln 1 L e 2 (27)

from which we know that S ext
GH , 0 if a 2 , 1/2, S ext

GH 5 0 when a 2 5 1/2,

and S ext
GH . 0 for a 2 . 1/2.

3. THE ENTROPY OF QUANTUM SCALAR FIELD IN STATIC
BLACK HOLES OBTAINED BY USING THE PATH
INTEGRAL APPROACH

By comparing (11) and (14) here with (3) and (20) in Solodukhin (1995a)

we find that the entropy of the Schwarzschild black hole and the RN black
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hole obtained by using the BWM are equal to the results obtained by EPIA

if we ignore the contribution from the vacuum surrounding the system. To

see if the two approaches give the same results for other static black holes,
we calculate the quantum entropy of the black holes listed in Section 2 by

using the EPIA.

We note that the formula (15) in Solodukhin (1995b) is only valid for

the spacetime

ds2 5 2 f (r) dt2 1
1

f (r)
dr2 1 r 2 gÄ ij( u )d u i d u j (28)

The Schwarzschild black hole and the RN black hole possess this form, but

the GM (Gibbons and Maeda, 1998), GHS, and GH black holes do not. The
metrics of the black holes listed in Section 2 take the form

ds2 5 2 f (r) dt2 1
1

f (r)
dr2 1 R (r)2gÄ ij( u ) d u i d u j (29)

After we Euclideanize the metric (29) by setting t ® ir and then let d t 5
b d f , we have

ds2 5 b 2 f (r) d f 2 1
1

f (r)
dr2 1 R (r)2gÄ ij( u ) d u i d u j (30)

We now follow Solodukhin (1995a, b) in assuming that the matter action of

the scalar is Imat 5 1±2 * ( ¹ F )2 ! 2 gd 4x, where g is the determinant of the

metric and F is a massless scalar field. The contribution to the entropy of
the black holes due to the matter fluctuations is given by

S q 5 ( b - b 2 1)Ieff( b , D ) | b 5 b H (31)

where D 5 ¹ m ¹ m is the Laplace operator, and Ieff( b , D ) 5 1±2 ln(det D g b ) is the
one-loop effective action calculated in the classical spacetime background

with conical singularity at the event horizon. The logarithm of the determinant

is described by ln(det D g b ) 5 2 * `
e 2 s 2 1 Tr(e 2 s D ), where the integral over s

is cut on the lower limit under e 2 5 L 2 2, and L is the maximal impulse.

Expanding Tr(e 2 s D ) asymptotically in four dimensions and using the above
results, we find the following divergent part of the effective action (Fur-

saev, 1994)

Ieff( b , D ) 5 2
1

32 p 2 F 1

2
a0 « 2 4 1 a1 e 2 2 1 a2 ln 1 L e 2

2

G (32)

where the coefficients take the form an 5 a reg
n 1 a a , n. For the metric (30)

the coefficients can be obtained by using the formulas of Fursaev (1994) and
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Solodukhin (1995b). Inserting the coefficients into the effective action (32)

and then using (31), we obtain the following quantum corrections to the

Bekenstein±Hawking entropy:

S I
q 5

Ah

48 p e 2 1 F a

18
2

Ah

20 p 1 f (r)9 | rh

6
1

p (R (r)2)8 | rh
R (rh)

2 b h 2 G ln 1 L e 2 (33)

with

a 5
1

8 p # (

R ( ! g d 2 u

Ah 5 # (

! g d 2 u

b h 5
4 p

f (r)8 | rh

where we have used

r 5 # dr

! f
, g ij 5 R (r)2gÄ ij, hij 5

1

2 b (rh) 1 dR2

dr 2 rh

gÄ ij

and primes denote differentiation with respect to r. The significance of the

signs given here can be found in Solodukhin (1995b). Equation (33) is equal

to (15) in Solodukhin (1995b) if R 2(rh) 5 r 2 and (1/8 p ) * S R S ! g d 2 u 5 1.

Since the results for the Schwarzschild black hole and RN black hole
have been given in Solodukhin (1995a, b), in following we will use (33) to

obtain the entropy for the GHS, the GM, and the GH dilaton black holes.

Inserting the metric (16) of the GHS dilatonic black hole (Garfinkle et
al. 1991) into (33), we obtain

S I
GHS 5

Ah

48 p e 2 1 1 1

180
1

1

60

Ah

r+ b 2 ln 1 L e 2 (34)

Using the metric (20) of the static GM dilaton black hole (Gibbons and

Maeda, 1988) and (33) we have

S I
GM 5

Ah

48 p e 2 1 1 2 1

90
1

1

30

4 p r+

b 2 ln 1 L e 2 (35)

Substitution of the metric (24) of the GH dilaton black hole into (33)

yields
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S I
GH 5

Ah

48 p e 2 1
1

90 1 2a 2 2 1

1 1 a 2 1
3

1 1 a 2

Ah

r+ b 2 ln
L
e

(36)

If we ignore the contribution from the vacuum surrounding the system,

the expressions (34)±(36) are equal to the results (18), (22), and (26),

respectively.

4. CONCLUSION AND DISCUSSION

We investigated the entropy of the quantum scalar field for a minimally

coupled quantum scalar field in thermal equilibrium at temperature 1/ b in

static black hole spacetime. The formula (8) was obtained by using the BWM

and is valid for general static black holes. The equation (33) was found using

the EPIA and is suitable for black holes which take the form of metric

(29). Some examples were considered. It was shown that if we ignore the

contribution from the vacuum surrounding the system and take d 2 5 2 e 2/15

and L 2 5 L e 2/h, then the entropy obtained by using the BWM is equal to

that obtained by the EPIA for the black holes listed in this paper. The entropy

of a static black hole consists of two parts: a quadratically divergent term

and a logarithmically divergent term.

The quadratic parts take the geometric character Ah /48 p e 2, which can

be regarded as a renormalization of the gravitational constant as discussion

in Solodukhin (1995b, c) and Ghosh and Mitra (1994). The renormalized

gravitational constant is determined by 1/Gren 5 1/G 1 1/(12 p e 2).

The logarithmically divergent terms are not proportional to the horizon

area. For the Schwarzschild black hole the term is not essential and does not

influence the physics since we know that the entropy is generally defined

up to an arbitrary additive constant. But for the RN black hole, the GHS

dilatonic black hole, the GM dilaton black hole, and the GH dilaton black

hole the terms depend on the characteristics of the black holes (mass M,

charge Q, etc.), and therefore cannot be neglected as nonessential additive

constants. For nonextremal black holes, if we define the quantum-corrected

radius of horizon r 2
h,ren 5 r 2

h 1 j l 2
PL, (where l 2

PL 5 G ren is the Planck length),

the quantity j 5 j (M, Q, etc.) ln ( L / e ) absorbs the logarithmic divergence

of the entropy. The parameters j (m, Q, etc.) of the black holes are (a) for

the Schwarzschild black hole, j (M ) 5 1/45 p , (b) for the RN black hole j (M,

Q) 5 ( 2 1/90 p 1 (1/30 p )4 p r+/ b ); (c) for the GHS dilatonic black hole j (M,

Q) 5 (1/180 p 1 (1/60 p )Ab/r+ b ); (d) for the GM dilaton black hole j (M,

Q) 5 ( 2 1/90 p 1 (1/30 p )4 p r+/ b ); and (e) for the GH dilaton black hole
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j (M, Q) 5
1

90 p 1 2a2 2 1

1 1 a 2 1
3

1 1 a 2

A S

r+ b H 2
The quantum corrections will increase the horizon radius if j (M, Q) . 0,

but will decrease the radius if j (M, Q) , 0.
In the case of the extremal black hole, the logarithmically divergent

terms of the RN black hole (r+ 5 M 5 Q) can be renormalized as in

nonextremal case. But for the extreme GHS dilatonic black hole (rh 5 2M
5 a), the extreme GM dilaton black hole with only electric charge (M 2 5
Q 2/2), and the extreme GH dilaton black hole (r+ 5 r 2 ), the area of the
horizon vanishes, and the whole black hole entropy is determined by the

logarithmically divergent term. The logarithmically divergent terms cannot

be renormalized by the gravitational constant because even with the renormal-

ization, the zero area should make the entropy vanish.
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